Mg2+-induced variations in the conformation and dynamics of HIV-1 TAR RNA probed using NMR residual dipolar couplings.

نویسندگان

  • Hashim M Al-Hashimi
  • Stephen W Pitt
  • Ananya Majumdar
  • Weijun Xu
  • Dinshaw J Patel
چکیده

The effects of divalent Mg(2+) on the conformation and dynamics of the stem-loop transactivation response element (TAR) RNA from HIV-1 have been characterized using NMR residual dipolar couplings (RDCs). Order matrix analysis of one bond 13C-1H RDCs measured in TAR at [Mg(2+)]:[TAR] stoichiometric ratios of approximately 3:1 (TAR(3.0Mg)) and approximately 4.5:1 (TAR(4.5Mg)) revealed that Mg(2+) reduces the average inter-helical angle from 47(+/-5) degrees in TAR(free) to 5(+/-7) degrees in TAR(4.5Mg). In contrast to the TAR(free) state, the generalized degree of order for the two stems in TAR(4.5Mg) is found to be identical within experimental uncertainty, indicating that binding of Mg(2+) leads to an arrest of inter-helical motions in TAR(free). Results demonstrate that RDC-NMR methodology can provide new insight into the effects of Mg(2+) on both the conformation and dynamics of RNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing RNA dynamical ensembles by combining MD and motionally decoupled NMR RDCs: new insights into RNA dynamics and adaptive ligand recognition

We describe a strategy for constructing atomic resolution dynamical ensembles of RNA molecules, spanning up to millisecond timescales, that combines molecular dynamics (MD) simulations with NMR residual dipolar couplings (RDC) measured in elongated RNA. The ensembles are generated via a Monte Carlo procedure by selecting snap-shot from an MD trajectory that reproduce experimentally measured RDC...

متن کامل

NMR studies of RNA dynamics and structural plasticity using NMR residual dipolar couplings.

An increasing number of RNAs are being discovered that perform their functions by undergoing large changes in conformation in response to a variety of cellular signals, including recognition of proteins and small molecular targets, changes in temperature, and RNA synthesis itself. The measurement of NMR residual dipolar couplings (RDCs) in partially aligned systems is providing new insights int...

متن کامل

Towards structural genomics of RNA: rapid NMR resonance assignment and simultaneous RNA tertiary structure determination using residual dipolar couplings.

We report a new residual dipolar couplings (RDCs) based NMR procedure for rapidly determining RNA tertiary structure demonstrated on a uniformly (15)N/(13)C-labeled 27 nt variant of the trans-activation response element (TAR) RNA from HIV-I. In this procedure, the time-consuming nuclear Overhauser enhancement (NOE)-based sequential assignment step is replaced by a fully automated RDC-based assi...

متن کامل

Quantitative conformational analysis of the core region of N-glycans using residual dipolar couplings, aqueous molecular dynamics, and steric alignment.

A method is described for quantitatively investigating the dynamic conformation of small oligosaccharides containing an alpha(1 --> 6) linkage. It was applied to the oligosaccharide Man-alpha(1 --> 3) [Man-alpha(1 --> 6)] Man-alpha-O-Me, which is a core region frequently observed in N-linked glycans. The approach tests an aqueous molecular dynamics simulation, capable of predicting microscopic ...

متن کامل

Structural plasticity and Mg2+ binding properties of RNase P P4 from combined analysis of NMR residual dipolar couplings and motionally decoupled spin relaxation.

The P4 helix is an essential element of ribonuclease P (RNase P) that is believed to bind catalytically important metals. Here, we applied a combination of NMR residual dipolar couplings (RDCs) and a recently introduced domain-elongation strategy for measuring "motionally decoupled" relaxation data to characterize the structural dynamics of the P4 helix from Bacillus subtilis RNase P. In the ab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 329 5  شماره 

صفحات  -

تاریخ انتشار 2003